COLEÇÃO MANUAIS DA FARMÁCIA

1 FARMACOLOGIA

COORDENADORA
ANDRÉA MENDONÇA GUSMÃO

AUTORES
FABRÍCIO SOUZA SILVA
PEDRO MODESTO NASCIMENTO MENEZES
MATHEUS SANTOS DE SÁ
SUMÁRIO

FARMACOCINÉTICA E FARMACODINÂMICA

1. Introdução ... 14
2. Farmacocinética ... 14
 1. Vias de administração ... 14
 2. Absorção ... 16
 3. Metabolismo dos fármacos 18
 4. Distribuição ... 19
 5. Eliminação dos fármacos 22
3. Farmacodinâmica ... 23
 1. Ligação fármaco-receptor 24
 2. Receptores farmacológicos 24
 3. Agonismo total, parcial, inverso e antagonismo 25
 4. Famílias de receptores 29
 5. Receptores acoplados a proteína G 30
 6. Segundos mensageiros 31
Referências .. 41

FARMACOLOGIA DO SISTEMA NERVOSO CENTRAL

1. Introdução ... 44
2. Neurotransmissão no sistema nervoso central 45
3. Fármacos antidepressivos 48
 1. Inibidores da monoamino-oxidase (imao) 49
 2. Antidepressivos tricíclicos (adt) 52
 3. Inibidores seletivos da recaptação de serotonina (isrs) 54
4. Fármacos antipsicóticos 56
 1. Antipsicóticos típicos .. 56
 2. Antipsicóticos atípicos 58
 3. Estabilizadores de humor 60
5. Fármacos ansiolíticos, sedativos e hipnóticos 61
 1. Benzodiazepínicos .. 63
 2. Barbitúricos .. 65
3. Compostos “z” ... 66

6. Tratamentos dos distúrbios degenerativos do SNC ... 67
 1. Farmacoterapia da doença de Parkinson .. 67
 2. Farmacoterapia da doença de Alzheimer ... 69

7. Fármacos anticonvulsivantes ... 70

8. Anestésicos gerais ... 74
 1. Anestésicos intravenosos ... 75
 2. Anestésicos inalatórios .. 76

Referências .. 91

FARMACOLOGIA DO SISTEMA NERVOSO AUTÔNOMO

CAPÍTULO 3

1. Introdução ... 95
2. Sistema nervoso autônomo simpático .. 97
 1. Agonistas adrenérgicos .. 100
 2. Antagonistas adrenérgicos ... 102
3. Sistema nervoso autônomo parassimpático .. 107
 1. Agonistas muscarínicos .. 109
 2. Antagonistas muscarínicos ... 110
 3. Bloqueadores neuromuscular e ganglionar .. 112
 4. Anticolinesterásicos reversíveis e irreversíveis ... 114

Referências .. 127

ANTI-INFLAMATÓRIOS E ANALGÉSICOS

CAPÍTULO 4

1. Introdução ... 129
2. Anti-inflamatórios ... 130
 1. Anti-inflamatórios esteroides ... 133
 2. Anti-inflamatórios não esteroides (ainés) ... 137
3. Dor e analgésicos centrais (opioïdes) ... 143
 1. Mecanismo neural da dor ... 143
 2. Opioides ... 144

Referências .. 158

FARMACOLOGIA DO SISTEMA CARDIOVASCULAR

CAPÍTULO 5

1. Introdução ... 160
2. Função cardiovascular: mecanismos e controle .. 160
3. Fármacos anti-hipertensivos ...167
 1. Fármacos simpaticolíticos ..169
 2. Bloqueadores dos canais para ca\(^{2+}\) (bcc)170
 3. Vasodilatadores diretos ..172
 4. Fármacos que afetam o sistema renina-angiotensina-aldosterona174
 5. Diuréticos ...179
4. Farmacoterapia da angina ...183
 1. Nitratos orgânicos ...185
 2. Antagonistas β-adrenérgicos ...185
 3. Bloqueadores dos canais para ca\(^{2+}\) ..186
 4. Outros fármacos antianginosos ...186
 5. Fármacos que reduzem os riscos de infarto do miocárdio187
5. Fármacos antiarrítmicos ..188
 1. Bloqueadores dos canais para Na\(^{+}\) ..189
 2. Antagonistas dos receptores β-adrenérgicos189
 3. Bloqueadores dos canais para Ca\(^{2+}\) ..190
6. Farmacoterapia da insuficiência cardíaca ...190
 1. Terapêutica da insuficiência cardíaca crônica191
 2. Glicosídeos cardíacos ...191

Referências ...204

ANTIBÍOTICOS

1. Introdução ..208
2. Classificação dos antibióticos ..209
3. Bases moleculares da ação dos antibióticos ..211
 1. Fármacos que interferem na síntese ou na ação do folato211
 2. Fármacos que inibem a síntese da parede celular bacteriana213
 3. Agentes que atuam diretamente sobre a membrana celular do microrganismo......218
 4. Fármacos inibidores da síntese protéica bacteriana219
 5. Fármacos afetam o metabolismo bacteriano dos ácidos nucleicos221
4. Resistência bacteriana aos antibióticos ...225
5. Efeitos colaterais dos antibióticos ...227

Referências ...237
Farmacologia do sistema nervoso autônomo

O que você irá ver nesse capítulo:

- Introdução
- Sistema nervoso autônomo simpático
 - Agonistas adrenérgicos
 - Antagonistas adrenérgicos
- Sistema nervoso autônomo parassimpático
 - Agonistas muscarínicos
 - Antagonistas muscarínicos
 - Bloqueadores neuromusculares e ganglionares
 - Anticolinesterásicos reversíveis e irreversíveis
- Quadro Resumo
- Quadro Esquemático
- Questões Comentadas

Objetivos de aprendizagem

- Diferenciar o sistema nervoso autônomo simpático e parassimpático
- Analisar os neurotransmissores envolvidos nas sinapses
- Aprender o mecanismo de ação dos receptores envolvidos nesses sistemas
- Entender como os fármacos atuam no sistema autônomo simpático e parassimpático

1 - INTRODUÇÃO

O sistema nervoso, no ser humano, divide-se anatomicamente e fisologicamente, podendo ser classificado em Sistema Nervoso Central (SNC) e Sistema Nervoso Periférico (SNP). O SNC engloba as funções do Encéfalo e Medula Espinhal, enquanto o SNP os nervos, gânglios e terminações.
CAPÍTULO 3

nervosas, como mostrados na Figura 1. Dentro das ramificações de classificação, tem-se que o SNP abrande os Sistema Nervoso Somático (SNS) e o **Sistema Nervoso Autônomo (SNA)**. O SNS relacionado com as funções motoras e os movimentos do corpo e o SNA controlando os processos vitais involuntários do organismo (Figura 2).

Por se distribuir amplamente pelo organismo e controlar funções que não dependem da consciência, o **SNA** é importante no funcionamento do sistema nervoso. Distribui-se amplamente em **nervos, gânglios**, inervam **coração, vasos sanguíneos, glândulas, músculo liso** e outros diversos tecidos, o que confere a sua extrema importância. O SNA ainda pode ser subdividido em **sistema nervoso autônomo simpático** e **sistema nervoso autônomo parassimpático**. Essa divisão pode, de modo geral, ser explicada a partir da liberação do neurotransmissor na transmissão sináptica pré-ganglionar e pós-ganglionar. Na maioria das fibras pós-ganglionares do **sistema simpático** o neurotransmissor é a **norepinefrina (NE)**, enquanto que as fibras pós-ganglionares do **sistema parassimpático** o neurotransmissor é unicamente a **acetilcolina (ACh)** e isso é de extrema importância para regulação da homeostasia do organismo.

Figura 1. Classificação anatomo-fisiológicas do Sistema Nervoso.

O **sistema nervoso autônomo simpático**, em geral, estimula algum órgão efetor, exceto o trato gastrintestinal. Além disso, é responsável pela liberação de **norepinefrina (NE)** e **epinefrina**, em casos de emergência, como nos processos de “**luta ou fuga**”, quando uma situação estressante permite um aporte de neurotransmissores que permitam fugir rapidamente ou tomar uma ação para lutar.

As **fibras pré-ganglionares liberaram acetilcolina (ACh)**, sendo chamadas de fibras colinérgicas, no entanto, o efeito **final é ativação de fibras adrenérgicas** que permite a estimulação da **liberação de NE**, por via sináptica ou estimulando as adrenais para liberação do neurotransmissor.

A síntese de **NE** acontece a partir da tirosina, com o neurotransmissor dopamina como intermediário de reação. A **NE** produzida atua nos receptores **adrenérgicos α e β** (Quadro 1). **Os receptores α₁** são acoplados a **proteína Gαq** e são responsáveis pela contração da musculatura lisa vascular, por exemplo, através da **ativação de fosfolipase Cβ, produção de IP₃ e DAG** (a partir de fosfolipídeos da membrana plasmática), **aumento da liberação de Ca²⁺** (via receptores de IP₃ – IP₃R e de rianodina – RyR) e **ativação de PKC**. Já os **receptores α₂** são acoplados a **proteína Gαi** e são responsáveis por relaxar a musculatura lisa vascular, por **inibição da ativação da enzima adenililciclase** e, consequentemente, **redução na produção de AMPc** (produção reduzida com aumento do substrato, o ATP) e **pouca ativação de PKA**. **Os receptores β** têm a transdução de sinal acoplada a **proteína Gαs** que pode ter funções distintas dependendo da localização tecidual. Apesar de sua transdução de sinal ser a partir da **ativação de adenililciclase**, **aumento na produção de AMPc e ativação de PKA** (por ser necessário 4 unidades de AMPc, ou seja, alta concentração intracelular), **no músculo liso das vias aéreas (β₂)** produz **relaxamento**, enquanto que no **coração (β₁)** promove **aumento na força e frequência de contração**.

Quadro 1. Apresentação dos subtipos de receptores adrenérgicos, sua transdução de sinal e o envolvimento tecidual.

<table>
<thead>
<tr>
<th>Subtipo</th>
<th>Proteína G acoplada</th>
<th>Efetores</th>
<th>Tecidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{1A}</td>
<td>G_α_q</td>
<td>Ativação de PLC, PLA$_{2\gamma}$, Canais para Ca$^{2+}$, Trocador Na$^+$/H$^+$ e Sinalização MAPK Modulação dos canais para K$^+$</td>
<td>Coração, Fígado, Músculo Liso, Vasos Sanguíneos, Pulmões, Cérebro</td>
</tr>
<tr>
<td>α_{1B}</td>
<td>G_α_q</td>
<td>Ativação de PLC, PLA$_{2\gamma}$, Canais para Ca$^{2+}$, Trocador Na$^+$/H$^+$ e Sinalização MAPK Modulação dos canais para K$^+$</td>
<td>Coração, Rins, Baço, Pulmões, Vasos sanguíneos, Tronco Cerebral</td>
</tr>
</tbody>
</table>

Fonte: próprio autor.
<table>
<thead>
<tr>
<th>Subtipo</th>
<th>Proteína G acoplada</th>
<th>Efetores</th>
<th>Tecidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{1D}</td>
<td>$G_{\alpha i}$</td>
<td>Ativação de PLC, PLA2, Canais para Ca$^{2+}$, Trocador Na$^+$/H$^+$ e Sinalização MAPK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modulação dos canais para K$^+$</td>
<td>Plaquetas Neurônios simpáticos Gânglios autonômicos Pâncreas Vasos coronários e do SNC Medula espinhal</td>
</tr>
<tr>
<td>α_{2A}</td>
<td>$G_{\alpha i}$</td>
<td>Inibição de adenililciclase (AC) Redução de AMPc e atividade PLA</td>
<td>Plaquetas Neurônios simpáticos Gânglios autonômicos Pâncreas Vasos coronários e do SNC Medula espinhal</td>
</tr>
<tr>
<td>α_{2B}</td>
<td>$G_{\alpha i}$</td>
<td>Inibição de adenililciclase (AC) Redução de AMPc e atividade PLA</td>
<td>Figado Rins Vasos sanguineos Vasos coronários e do SNC Pâncreas Plaquetas</td>
</tr>
<tr>
<td>α_{2C}</td>
<td>$G_{\alpha i}$</td>
<td>Inibição de adenililciclase (AC) Redução de AMPc e atividade PLA</td>
<td>Gânglios da base Córtex Cerebelo Hipocampo</td>
</tr>
<tr>
<td>β_1</td>
<td>$G_{\alpha i}$</td>
<td>Ativação de adenililciclase AC) Aumento de AMPc e PLA Ativação dos canais para Ca$^{2+}$ do tipo-L</td>
<td>Coração Rins Adipócitos Músculo esquelético Núcleo olfatório Tronco cerebral Medula espinhal</td>
</tr>
<tr>
<td>β_2</td>
<td>$G_{\alpha i}$</td>
<td>Ativação de adenililciclase AC) Aumento de AMPc e PLA Ativação dos canais para Ca$^{2+}$</td>
<td>Coração Pulmões Vasos sanguíneos Músculo liso brônquico e TGI Rins</td>
</tr>
<tr>
<td>β_3</td>
<td>$G_{\alpha i}$</td>
<td>Ativação de adenililciclase AC) Aumento de AMPc e PLA Ativação dos canais para Ca$^{2+}$</td>
<td>Tecido adiposo TGI Coração</td>
</tr>
</tbody>
</table>
A NE é o neurotransmissor primordial nas ações da transmissão adrenérgica, porém é importante ressaltar que a sua síntese permite a produção de outros ligantes endógenos, como por exemplo, a dopamina (DA) e a epinefrina (EPI), sendo chamados de catecolaminas.

As informações em relação as catecolaminas foram bastante difundidas e pesquisadas nos últimos anos, por questões farmacoterapêuticas envolvendo as funções desses endógenos em diversas patologias, principalmente no que diz respeito a saúde mental, tratamento da hipertensão e outras condições.

2.1 - Agonistas adrenérgicos

Os **fármacos agonistas do sistema nervoso autônomo simpático são chamados de simpaticomiméticos** por seus efeitos finais serem semelhantes a ativação dos receptores adrenérgicos pela NE, porém podem ser classificados como diretos (atuarem nos receptores α e β), indiretos (promoverem liberação da NE ou bloqueando suas enzimas de degradação) ou mistos por promoverem ambas ações ao mesmo tempo (Quadro 2). Além disso, os fármacos podem ter variada seletividade por um alvo farmacológico e isso pode determinar seu mecanismo de ação por completo, haja vista o tecido influenciar nas respostas promovidas pelos fármacos.

<table>
<thead>
<tr>
<th>Ação Direta</th>
<th>Ação Indireta</th>
<th>Ação Mista</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenilefrina (α₁)</td>
<td>Anfetamina (aumento na liberação de NE)</td>
<td>Efedrina (aumento na liberação de NE e ativação de α₁, α₂, β₁, β₂)</td>
</tr>
<tr>
<td>Clonidina (α₂)</td>
<td>Cocaína (inibe a captação de NE)</td>
<td></td>
</tr>
<tr>
<td>Isoproterenol (β₁, β₂)</td>
<td>Selegilina (inibidor da monoaminaoxidase – MAO)</td>
<td></td>
</tr>
<tr>
<td>Epinefrina (α₁, α₂, β₁, β₂)</td>
<td>Entacapona (inibidor da catecol-O-metiltransferase – COMT)</td>
<td></td>
</tr>
<tr>
<td>Terbutalina (β₂)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.1- Isoproterenol

O isoproterenol é um agonista β-adrenérgico não seletivo, com baixa afinidade pelos receptores α-adrenérgicos, ou seja, produz poucos efeitos vasculares, inclusive reduzindo a resistência vascular e influenciando o aumento do débito cardíaco, porém seus efeitos cardíacos são relacionados a palpitações, taquicardia sinusal e arritmias. Além disso, promove relaxamento do músculo liso em quase todos os tecidos quando o tônus está
elevado, contudo, com efeitos mais proeminentes sobre a musculatura lisa dos brônquios e do trato gastrintestinal.

O fármaco tem rápida absorção por via parenteral e inalatória, com biotransformação no fígado e da COMT em outros tecidos, além de baixa degradação pela MAO, permitindo maiores concentrações plasmáticas e maior tempo de ação.

2.1.2 - Fenilefrina

A fenilefrina é um agonista α₁-adrenérgico seletivo e provoca acentuada vasoconstrição arterial, podendo ser utilizado como descongestionante nasal e midriático (solução oftálmica). É pouco utilizada na terapêutica, mas tem papel para regular processos hipotensivos, incluindo hipotensão ortostática e choque.

2.1.3 - Clonidina

A clonidina é um agonista α₂-adrenérgico utilizado durante algum tempo para o tratamento da hipertensão arterial, por atuar em nível do SNC, nos neurônios pré sinápticos, suprimindo a atividade do sistema simpático e nos vasos periféricos, apresentando elevado efeito anti-hipertensivo, reduzindo a pressão arterial e a frequência cardíaca, de forma prolongada quando administrada por via parenteral.

Em estudos clínicos, foi revelado que a atuação da clonidina sobre a congestão nasal apresentava hipotensão, sedação e bradicardia como efeitos secundários, haja vista a ampla distribuição dos neurônios simpáticos pelo organismo.

O fármaco é bem absorvido por administração oral, tem biodisponibilidade de quase 100% e meia-vida média de 12 horas. Além disso, existe uma boa correlação entre a biodisponibilidade e seu efeito farmacológico. Problemas renais podem retardar a eliminação e alterar sua meia-vida, sendo monitorado para esses casos.

2.1.4 - Anfetamina

A anfetamina tem ação simpaticomímética indireta, aumentando a liberação de NE a partir de seu deslocamento das vesículas em que se encontram, além de terem ação periférica em receptores α e β-adrenérgicos, com efeitos durando até várias horas. Sua administração por via oral eleva a pressão arterial, pode promover arritmias, além de variações que incluem depressão e fadiga. Além disso, a ação sobre o músculo liso pode
ser de contração ou relaxamento, dependendo de qual estado se encontra o órgão. Por exemplo, no trato gastrointestinal com atividade elevada, a anfetamina pode relaxar a musculatura provocando redução do trânsito intestinal ou o oposto em caso do órgão estar relaxado.

Em nível central, sua ação sobre o SNC estimula o centro respiratório bulbar e estimula as sinapses do SNC, altera o estado de vigília e de alerta, reduz a percepção de fadiga, eleva o humor com aumento da iniciativa, eleva a capacidade de concentração, aumento da atividade motora e da fala.

Está relacionado com a depressão do apetite por aumento na liberação de NE e DA, permitindo uma menor ingestão de comida e não um aumento do metabolismo, sendo um dos motivos para seu uso abusivo que também inclui a possibilidade de não estado de sonolência e aumento de energia. No entanto, esse fármaco só deve ser utilizado sob orientação médica.

2.1.5 - Efedrina

A efedrina é um simpaticomicético misto de ação nos receptores α e β adrenérgicos e atua a partir da liberação de NE dos neurônios simpáticos. Isso permite uma elevação da frequência e o débito cardíaco e aumento da pressão arterial, pois agem, principalmente, sobre os receptores α-adrenérgicos, inclusive com aumento na contração de musculatura lisa. Além disso, quando atua nos receptores β adrenérgicos promove broncodilatação. Os efeitos do fármaco podem persistir por várias horas quando administrada por via oral e tem sua meia-vida por volta de 3 a 6 horas.

2.2 - Antagonistas adrenérgicos

Os fármacos antagonistas do sistema simpático têm por característica reduzir a interação da NE, da epinefrina e de outros agentes simpaticomicéticos com os receptores α e β-adrenérgicos, sendo que eles possuem diferentes afinidades pelos receptores, podendo, inclusive, ter uma interação covalente e podem ser chamados de simpaticolíticos. A capacidade de interação pode auxiliar ou atrapalhar o quadro clínico, pois os fármacos têm ações distintas a depender do receptor e o tecido em que se encontra, o que pode levar a ocorrência de efeitos colaterais, quando disseminado por todo organismo.

Todas as informações sobre a complexidade do sistema nervoso autônomo são necessárias para compreender de forma completa a ação dos
fármacos em relação a seu mecanismo de ação em nível molecular e potencialidades terapêuticas.

Os antagonistas do *sistema nervoso simpático* serão exemplificados quanto a sua atuação nos receptores adrenérgicos e podem ser classificados de diversas formas, desde a ação em cada tipo ou subtipo de receptor até por sua seletividade em relação a esses receptores.

2.2.1 - Prazosina

É um fármaco usado em urgências clínicas relacionadas à hipertensão, por ser um antagonista seletivo dos receptores α₁-adrenérgico, diferente de outros antagonistas não seletivos que poderiam causar efeitos colaterais graves. A sua afinidade para o receptor α₁ é mil vezes superior aos receptores α₂-adrenérgicos, o que permite vantagens relevantes. Além de ser potente para os subtipos de receptores α, também tem efeito sobre a fosfodiesterase, reduzindo sua atividade. Existem alguns efeitos adversos como hipotensão postural e síncope.

O seu efeito na hipertensão se dá nas arteríolas e veias, reduzindo a resistência periférica total, não aumentando a frequência cardíaca e o débito cardíaco, além de não produzir liberação de NE a partir do SNC, o que não permite taquicardia reflexa por liberação de simpáticomiméticos.

É um fármaco bem absorvido por via oral (biodisponibilidade de 50-70%), sendo amplamente distribuído pela α₁-glicoproteína ácida, com metabolismo hepático, em maior proporção, e meia vida de 3 horas.

A prazosina exerce efeito na melhora da micção e das dores provocadas pela hiperplasia prostática benigna (HPB), sendo utilizadas as doses de 1-5 mg, 2 vezes ao dia, semelhante ao tratamento da hipertensão que trata com 1 mg, 2 ou 3 vezes ao dia.

Esse fármaco foi o protótipo para diversos outros medicamentos utilizados atualmente como a terazosina e doxazosina que são derivados da prazosina, além de outros que tem estrutura química diferente (alfuzosina, tamsulosina e silodosina).

2.2.2 - Ioimbina

É um antagonista competitivo dos receptores α₂-adrenérgicos derivado da casca do caule de *Pausinystalia yohimbe* ou nas raízes de plantas do gênero *Rauwolfia*. Tem a capacidade de atravessar a barreira hemato-encefálica (BHE) produzindo um aumento na pressão arterial e da frequência
cardíaca, intensificando os efeitos simpaticomiméticos, haja vista sua atuação como bloqueador dos autorreceptores no SNC.

Alguns dados da literatura sugerem uma melhoria no tratamento da disfunção erétil, porém sua eficácia não é semelhante aos inibidores da fosfodiesterase que têm dados mais robustos em relação a essa atividade farmacológica.

2.2.3 - Propranolol

Esse fármaco é um antagonista β-adrenérgico não seletivo e não bloqueia os receptores α-adrenérgicos, sendo amplamente utilizado no tratamento da hipertensão arterial e outras patologias relacionadas ao sistema cardiovascular, perdendo espaço para os antagonistas seletivos β-adrenérgicos e fármacos que também atuem sobre os receptores α1-adrenérgicos ou liberação de óxido nítrico.

O propranolol é lipofílico e tem a capacidade de atravessar a BHE e atuar no SNC, tem completa absorção por via oral, com metabolismo hepático e taxa de ligação a proteínas plasmáticas de 90%. A biodisponibilidade desse fármaco depende de cada indivíduo, sendo observadas mudanças nas concentrações plasmáticas de forma proeminente. Sua meia vida é de 4 horas e seu efeito é reduzido com o tempo, necessitando um aumento na dose para os mesmos efeitos farmacológicos obtidos no começo do tratamento, o que pode levar a alguns efeitos colaterais importantes.

2.2.4 - Timolol

É um antagonista não seletivo dos receptores β-adrenérgicos, utilizado no tratamento de algumas doenças dos sistemas cardiovascular, porém sua disseminação de uso está relacionada com o tratamento de glaucoma de ângulo aberto e hipertensão intraocular, em formas farmacêuticas oftálmicas. O bloqueio dos receptores β-adrenérgicos permite uma redução na produção de humor aquoso, o que está relacionado com uma melhora clínica dos indivíduos.

O fármaco permite uma absorção sistêmica considerável, apesar de sua administração ser oftalmica, sendo seu metabolismo hepático (CYP2D6) com meia vida de 4 horas.

2.2.5 - Atenolol

Esse fármaco é um antagonista seletivo para os receptores β1-adrenérgicos e não tem capacidade de atravessar a BHE, diferente do propranolol,
conferindo maior segurança em relação aos efeitos adversos sob o SNC. Sua absorção não varia de acordo com os indivíduos, tem meia vida de 5-8 horas com pico plasmático máximo de 4 horas, sendo eliminado na urina. Após administração única de 50 ou 100 mg em pacientes, o efeito anti-hipertensivo se estende por 24 horas.

Na prática clínica é utilizado para o tratamento de hipertensão arterial sistêmica, doença coronariana, isquemia do coração, arritmias e complicações relacionadas a infarto agudo do miocárdio.

2.2.6 - Carvedilol

Esse fármaco tem perfil farmacológico diferente dos demais, é considerado um antagonista dos receptores β-adrenérgicos, mas na verdade seu efeito é variado. Antagoniza seletivamente os receptores β₁ e α₁-adrenérgicos e é agonista parcial dos receptores β₂-adrenérgicos, além de ter efeitos sobre os canais para Ca²⁺, antioxidante e anti-inflamatório. Seu uso clínico é realizado em pacientes com hipertensão e insuficiência cardíaca congestiva (ICC), possuindo um efeito cardioprotetor proeminente.

O fármaco é rapidamente absorvido após administração por via oral, com capacidade de se distribuir por todos os tecidos, principalmente por sua ampla ligação as proteínas. Tem metabolismo hepático (CYP2D6 e CYP2C9) com meia vida de 7-10 horas, sendo necessário monitoramento do fármaco quando há politerapia com fármacos que afetem as enzimas do metabolismo hepático.

Os fármacos descritos anteriormente podem ser vistos de forma resumida no Quadro 3 de acordo com seu mecanismo de ação, farmacocinética e indicações de uso.

Quadro 3. Relação de fármacos que atuam sobre o sistema nervoso autônomo simpático.

<table>
<thead>
<tr>
<th>Fármacos</th>
<th>Mecanismo de ação</th>
<th>Farmacocinética</th>
<th>Indicações de uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfetamina</td>
<td>Liberação indireta de NE e agonismo α e β adrenérgicos</td>
<td>Dose: 30-70 mg/dia (Lis-dexanfetamina) Meia-vida: < 1 h Matabolismo: CYP2D6</td>
<td>Alguns derivados são utilizados no tratamento de Transtorno do deficit de atenção (TDAH) e narcolepsia</td>
</tr>
<tr>
<td>Atenolol</td>
<td>Antagonista β₁ adrenérgico</td>
<td>Dose: 50-100 mg/dia Meia-vida: 6,1±2,0 h Matabolismo: hepático</td>
<td>Tratamento da hipertensão arterial, doença coronariana, isquemia do coração, arritmias e complicações relacionadas a infarto agudo do miocárdio</td>
</tr>
<tr>
<td>Palavras Chaves</td>
<td>Descrição</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema Nervoso Autônomo</td>
<td>Parte do sistema nervoso periférico que abrange nervos e gânglios essenciais para o organismo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema Nervoso Simpático</td>
<td>Responsável pela secreção final de Noradrenalina (NE) através de fibras colinérgicas pré-ganglionares ou fibras adrenérgicas pós-ganglionares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptores α e β-adrenérgicos</td>
<td>São receptores acoplados a proteína G_α e G_β_1 (α_1, α_2) G_γ (β_1, β_2) que são sensíveis a NE e Adrenalina, com responsabilidade de ação por diversos tecidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agonistas adrenérgicos</td>
<td>São fármacos que atuam nos receptores adrenérgicos mimetizando a ação da NE nos tecidos, também chamados de simpaticomiméticos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antagonistas adrenérgicos</td>
<td>São fármacos que atuam nos receptores adrenérgicos impedindo a ação da NE nos tecidos, também chamados de simpaticolíticos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema Nervoso Parassimpático</td>
<td>Responsável pela secreção final de Acetilcolina (ACh) através de fibras colinérgicas pré e pós-ganglionares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptores Nicotínicos</td>
<td>Canais iônicos operados por ligante (ACh como ligante endógeno) encontrados nos neurônios pós-ganglionares e responsáveis pelo influxo de Na$^+$, K$^+$ e Ca$^{2+}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptores Muscarínicos</td>
<td>São receptores acoplados a proteína G_α (M_1, M_2 e M_3) e G_γ (M_4) que são sensíveis a ACh, com responsabilidade de ação por diversos tecidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agonistas muscarínicos</td>
<td>São fármacos que atuam nos receptores muscarínicos mimetizando a ação da ACh nos tecidos, também chamados de colinérgicos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antagonistas muscarínicos</td>
<td>São fármacos que atuam nos receptores muscarínicos impedindo a ação da ACh nos tecidos, também chamados de anticolinérgicos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloqueadores neuromuscular e ganglionar (antagonistas nicotínicos)</td>
<td>São fármacos que atuam nos receptores nicotínicos nos gânglios e placa motora impedindo a ação da ACh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticolinesterásicos reversíveis e irreversíveis</td>
<td>São fármacos que inibem a ação de Acetilcolinesterase (AChE) que é uma enzima que degrada a ACh, permitindo um amento na concentração de ACh na fenda sináptica e seu posterior efeito</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUADRO ESQUEMÁTICO

Sistema Nervoso

Sistema Nervoso Central

Sistema Nervoso Periférico

Sistema Nervoso Somático

Sistema Nervoso Autônomo

Sistema Nervoso Parassimpático

Sistema Nervoso Simpático

Collinérgicos

Adrenérgicos

Agonistas

Antagonistas

Anticollinesterásicos

Nicotínicos

Muscarínicos

α-adrenérgicos

β-adrenérgicos

Fonte: próprio autor.
01 (SECRETARIA DE ESTADO DA SEGURANÇA PÚBLICA-SE – PERITO CRIMINALÍSTICO DA POLÍCIA CIVIL – FARMÁCIA, 2014)
Analise as substâncias a seguir e assinale aquela que corresponde ao grupo dos antagonistas muscarínicos.
Ⓐ Carbacol.
Ⓑ Ciclopentolato.
Ⓒ Pilocarpina.
Ⓓ Oxotremorina.
Ⓔ Metacolina.

GRAU DE DIFICULDADE ⬤ ⬤ ⬤

DICA: Importante estar atento ao nome dos fármacos antagonistas e agonistas colinérgicos (muscarínicos e nicotínicos).
Alternativa A: INCORRETA. Carbacol é um análogo da Acetilcolina que não permite a degradação pela Acetilcolinesterase, ou seja, tem ação colinérgica.
Alternativa B: CORRETA. Ciclopentolato, um antagonista competitivo dos receptores muscarínicos (a atropina, derivada da planta *Atropa bella-donna* também é dessa classe) e atua como midriático (dilata a pupila) em soluções oftálmicas.
Alternativa C: INCORRETA. Pilocarpina é um alcaloide natural, derivado de plantas do gênero *Pilocarpus* e apresenta ação agonista muscarínica e nicotínica, com tratamento sob o sistema ocular, por exemplo, glaucoma de ângulo aberto.
Alternativa D: INCORRETA. Oxotremorina é um alcaloide sintético utilizado apenas em pesquisas farmacológicas em que é necessário mimetizar os efeitos da acetilcolina, ou seja, é um agonista colinérgico.
Alternativa E: INCORRETA. Metacolina é um fármaco pouco utilizado na terapêutica. Também é um análogo da Acetilcolina que não permite ação da Acetilcolinesterase e é utilizado na terapêutica para detecção precoce de pacientes com asma.
02 (SECRETARIA DE ESTADO DA SEGURANÇA PÚBLICA-SE – PERITO CRIMINALÍSTICO DA POLÍCIA CIVIL – FARMÁCIA, 2014)
Considerando a classificação dos agonistas dos receptores adrenérgicos, assinale a alternativa correta.

Ⓐ A α₁-fenilefrina, α₂-clonidina, a β₁–dobutamina e a β₂-terbutalina, constituem clássicos representantes agonistas adrenérgicos não seletivos de ação direta.
Ⓑ A anfetamina, a tiramina, a cocaína, a pargilina e a entacapona constituem drogas agonistas de ação direta.
Ⓒ A efedrina é um agonista adrenérgico de ação mista.
Ⓓ Anfetamina, a tiramina, a cocaína, a pargilina e a entacapona, constituem drogas agonistas de ação mista.
Ⓔ A α₁-fenilefrina, α₂-clonidina, a β₁–dobutamina e a β₂-terbutalina constituem clássicos representantes agonistas adrenérgicos de ação indireta.

GRAU DE DIFICULDADE ★★★

DICA: Importante estar atento ao nome dos fármacos com ação simpaticomimética de ação direta, indireta e mista. Além disso, é necessário saber em quais receptores determinados fármacos atuam e isso nos leva a forma como as proposições estão escritas, por exemplo, α₁-fenilefrina ou β₂-terbutalina, o que infere sua ação seletiva ou então não estariam escritos dessa forma.

Alternativa A: INCORRETA. Na própria estrutura da proposição remete a seletividade dos fármacos em questão, ou seja, α₁-fenilefrina, α₂-clonidina, a β₁–dobutamina e a β₂-terbutalina são SELETIVOS de ação direta.
Alternativa B: INCORRETA. Anfetamina, a tiramina, a cocaína, a pargilina e a entacapona são fármacos de ação INDIRETA, permitem por diversas vias a liberação de catecolaminas.
Alternativa C: CORRETA. Efedrina é um dos poucos fármacos que apresentam ação mista, atuando diretamente nos receptores adrenérgicos ou aumentando a secreção de catecolaminas.
Alternativa D: INCORRETA. Anfetamina, a tiramina, a cocaína, a pargilin-